viernes, 22 de marzo de 2013

Diodos Laser


LASER es un acrónimo de Light Amplification by Stimulated Emission of Radiation. Las aplicaciones de estos diodos son muy diversas y cubren desde el corte de materiales con haces de gran energía hasta la transmisión de datos por fibra óptica.

Características: ventajas frente a los diodos LED
Los diodos láser son constructivamente diferentes a los diodos LED normales. Las características de un diodo láser son

  • La emisión de luz es dirigida en una sola dirección: Un diodo LED emite fotones en muchas direcciones. Un diodo láser, en cambio, consigue realizar un guiado de la luz preferencial una sola dirección. 



  • La emisión de luz láser es monocromática: Los fotones emitidos por un láser poseen longitudes de onda muy cercanas entre sí.
En cambio, en la luz emitida por diodos LED, existen fotones con mayores dispersiones en cuanto a las longitudes de onda. 


Debido a estas dos propiedades, con el láser se pueden conseguir rayos de luz monocromática dirigidos en una dirección determinada. Como además también puede controlarse la potencia emitida, el láser resulta un dispositivo ideal para aquellas operaciones en las que sea necesario entregar energía con precisión.

Materiales utilizados
Los materiales utilizados para la fabricación de diodos láser son prácticamente los mismos que en diodos LED. En comunicaciones se utilizan predominantemente diodos láser que emiten en el infrarrojo. También se utilizan de luz roja.

 
Ejemplo de aplicación: El lector de discos compactos
Una de las muchas aplicaciones de los diodos láser es la de lectura de información digital de soportes de datos tipo CD-ROM o la reproducción de discos compactos musicales. El principio de operación de uno y otro es idéntico.

 
Esquema del funcionamiento del CD-ROM


Un haz láser es guiado mediante lentes hasta la superficie del CD. A efectos prácticos, se puede suponer dicha superficie formada por zonas reflectantes y zonas absorbentes de luz. Al incidir el haz láser en una zona reflectante, la luz será guiada hasta un detector de luz: el sistema ha detectado un uno digital. Si el haz no es reflejado, al detector no le llega ninguna luz: el sistema ha detectado un cero digital.

Un conjunto de unos y ceros es una información digital, que puede ser convertida en información analógica en un convertidor digital-analógico. Pero esa es otra historia que debe de ser contada en otra ocasión.

DISPLAY DE CRISTAL LIQUIDO (LCDS)
Los LCDs difieren de otros tipos de displays en que no generan luz sino que trabajan con la reflexión de la luz. El principio de funcionamiento es sencillo. Estos cristales líquidos están formados por unas moléculas alargadas con forma de puro, que se llaman moléculas nemáticas y se alinean con una estructura simétrica. En este estado el material es transparente. Un campo eléctrico provoca que las moléculas se desalinien de manera que se vuelven opacas a la luz. De esta manera, aplicando o no aplicando un campo eléctrico (es decir, polarizandoo no polarizando), podemos jugar con oscuridad o transparencia respectivamente. Si aplicamos el campo localmente en geometrías iguales al display de 7 segmentos, conseguiremos un display análogo al de los LEDs pero con cristal líquido. 


Esquema constructivo de un LCD


En la construcción de un LCD se depositan electrodos transparentes en la cara interior de los cristales, tal y como aparece en la figura superior.
Estos electrodos tienen la geometría deseada, por ejemplo, el display de 7 segmentos. El espesor del cristal líquido es muy pequeño, del orden de 0.01mm.

Ya tenemos nuestro invento preparado. Si no se polarizan los terminales, al incidir la luz sobre el cristal frontal, pasa a través del cristal líquido y es reflejada por el espejo incidiendo en el ojo que está mirando. El resultado: todo se ve de color claro.

Si polarizamos un electrodo, por ejemplo, el electrodo a, el cristal líquido pegado al electrodo se vuelve opaco, negro, oscuro. La luz ya no es reflejada.

 
Características eléctricas del LCD
Desde el punto de vista eléctrico, se puede representar el LCD como una capacidad de valor muy pequeño en paralelo con una resistencia muy grande.

Circuito equivalente de un LCD

Se necesita una señal pequeña en AC de 3 a 7 voltios para polarizar el LCD. Tensiones mayores romperían la fina capa de cristal líquido. La frecuencia de la tensión puede variar entre 30 y 50 Hz. Frecuencias más bajas producen un efecto de parpadeo, frecuencias más altas producen un aumento del consumo. 


Espero haber ayudado en algo. Hasta la próxima oportunidad! 

No hay comentarios:

Publicar un comentario

       
free counters

Páginas vistas en total según Google